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Abstract

Counterexamples to two lajor tbeorellS in mathematical analysis
are presented and they are attributed to present inadequacy of the
notions function, derivative and integral. The inadequacy is
rectified with the introduction of set-valued function, qeneralized
derivative and qeneralized integral and appropriate probability
distributions•

1. Counterexamples

This paper serves' as a general intrOduction to a series
of papers on the applications of probability d~stributions.

counterexamples to two major theorems in analysis have
been discovered lately. The theorems are as follows:

I. If a function is absolutely continuous then it is
differentiable (Royden, 3rd. ed. [4]: this is really meant
differentiable, a.e.) .

I I. (Lebesque Theorem) A bounded function is Riemann
integrable if and only if its set of discontinuity has measure
zero (given as an exercise in Royden, end. ed. [4]).

The counterexample to I was a paradox to Lebesgue which
was explained by Young [6]. It goes as follows:



48

We start with the triangle ABD in the figure whose base
AB joins the points A(O,O) and B(l,O) and the slopes of sides
AD and DB are, respectiviely, +1 and -1. We form a sequence

of saw-tooth functions Cn:Yn = Yn(x), 0 ~ x ~ 1, n = 1,2, ••. ,
whose first term has the graph which forms the sides AD and DB
of the given triangle. For the second term, join the midpoin~

P .of AD to· .the midpoint Q of AB and also the point Q to the
midpoint R of DB to form the polygonal line APQRB from A to B.
We denote this function by C2:Y2 = Y2(X), 0 ~ x s ·1. By the
geometry of the figure the slope of C2 at any point either is
+1 or -1 (except of corner points where the derivative does
not exist in the ordinary sense in this set of measure 0).
Also, the length Ic2 1 of C2 = length I c1 1 of C1 = J2 •
Continuing the same construction we obtain a polygonal line em
in the sequence Cn' n = 1,2,... which has the following
properties:

JJ1+(Ym)2dX JJ1+(Ym)2dX(a) Icml = + = /2- = Ic11
{XIYm=l} {XIYm=-l}

.
(the set at which Ym is simultaneously +1 and -1 has
measure 0).

•}

..

•

•

(b) The sequence Cn' n = 1,2, .•• , is uniformly conver
gent and since each Cn is continuous the limit which we denote
by Co:Yo = yo(x), 0 s x s 1, is continuous. In fact, Yo
coincides with the segment [0,1] whose equation is y = 0 which
is absolutely continuous. Hence, Yo is also absolutely
continuous.

•

..
•
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(c) What about the derivative of Yo? Does it exist?' If
·it does, what is it? We cannot have y = 0 as claimed by a
visiting mathematician here. For, if t~at were so, it would
violate the dominated convergence theorem applied to (a) since
this would imply

1

f )1+(yo)2<bc =
o

1 +J2 lim Icnl = lim
n-oee n-o-e

1

f J1+(Yn)2dX
o

•

o

•

•

•
l~

In fact, the. derivative of Yo does not exist in the ordinary
sense because the sequence Yn does not converge to a single
point. But the limit points of the sequence YQ' n = 1,2, ••• ,
form the set {1, 1}, i.e., y' is set-valued. (To be precise,
the set-values of Yo are the limit points of the sequence
<1, -1, 1, ..• > or <-1, 1, -1, ••. > or limit set of the
sequence of sets <{1,-1}>.

The question here is quite categorical: Is Co:Yo =
yo(x), 0 S x S 1, a counterexample to the above theorem? The
answer is also a categorical yes and this counterexample is
neither hair-splitting nor ambiguous. It does raise the
following important points which are the source of this
particular contradiction:

(a) Inadequacy of the present notion of function; this
was pointed out by Young exactly 55 years ago!

(b) Inadequacy of the notion derivative; that the
derivative of a function cannot be adequately
expressed by its values and that there is a need to
expand the notion to include set-valued derivative.

(c) Existence of a new kind of function called
infinitesimal zigzag (introduced by Young in 1969).

(d) The fallacy in proving existence by approximation or
convergence

For the· Lebesgue theorem on the Riemann integral we
present, as counterexample, the topologist sine curve given by
f(x) = sin1/x. Known proofs of supposed Riemann integrability
of sin1/x involves standard approximation techniques by a
sequence of Riemann integrals or Riemann sums. One of the
most common involves the construction of its Riemann integral
outside the neighborhood (-€, € ) of x = 0, which certainly
exists, and taking a sequence of such integrals by letting €->
0, which certainly converges. But, necessarily, because the
limit of a convergent sequence does not necessarily inherit, a
property (in this case that of being a Riemann integral) of,
the elements of the sequence. In this case, the limit is not
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the Riemann integral of sin1/x over an interval containing
x = 0 because this function cannot be approximated by a step
function from below, the closest it could get to the function
near 0 is at y = -1 and as an approximation from above, at
y = 1. Thus, it is impossible to form a Riemann sum for this
function. The figure, hopefully, illustrates the situation
for an oscillating function such as this one.

FigLlre 2

best we can say here is that we can construct a convergent
sequence of Riemann integrals with some-relation to sin1/x but
the limit is not its integral.

This may sound like hair-splitting but it does raise some
important points:

(a) The behavior (including non-Riemann integrability)
of a function that tends towards a set, in this case
the limit set or segment [-l,lJ. (~his is the case
with oscillatory functions).

(b) Inadequacy or limitation of the present notions of
function, limit and continuity. (In other words,
there is a need for a calculus of set-valued
functions including more general notions of integral
and derivative).

(c) Inadequacy of the Riemann integral.

(d) This is another counter example on the fallacy of
proving existence by approximation or convergence.

These counterexamples have far-reaching significance for
mathematics especially that part of analysis that spring off
real analysis. In general, contradictions play a very
positive role in mathematics. The Russell paradoxes [lJ, the
Perron ParadOX [6J and the Lebesgue paradox [6], [7], to
mention just a few, have led to monumental works in
mathematics.

•i}

•

•

•
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The two counterexamples together give us an idea of how a
set-valued function may arise as well as set-valued
derivative. The function sin1/x is set-valued at x = 0 if we
define its value there as the set or vertical line segment
[-1,1] • We denote this segment by sin1/0. In the
interval [-£,£] we can construct a set-valued function defined
by

{f(x)} = sin1/0x'

where sin1/0x is the vertical segment [-1,1] at the point x •

2. Probability distribution

A set-valued function would not have much use unless the
set has some structure. A useful structure is a probability
distribution. It will allow us to introduce both the
generalized integral and generalized derivative which have
applications to differential equations and the probabilistic
motion of subatomic particles. We first formally develop the
notion of probability distribution.

suppose we have a set of real numbers x with a a-algebra
1: of measurable sets (e.g., the Borel sets). We define a
measure ~ as a mapping from 1: into the real numbers which is
countably additive on pair-wise disjoint elements of 1:. If
~(X) = k is finite we can normalize ~ by dividing it by k ,
Thus, we have a measure p such that p(X) = 1. We call p a
unit measure or probability measure. Imagine this unit to be
distributed over the whole set X so that the integral with
respect to this measure satisfies

(1)

•
then we call this distribution a unit measure distribution or
probability distribution p. If we introduce a dummy variable
w that ranges over the set X we denote this probability
distribution functiqn by pew) and the integral in (1) becomes

(2) J p(w)dw = 1.
x .

•

Probabi~ity distribution is a special case of measure
distribution (when the measure of X is not necessarily 1) and
the lat~ef is ~ more general notion than density of an object
wi th unit lIlaGl&;. The density may be function of. the points
(dummy variable)whioh raftges over the object.

o
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A measure is said to have compact· support K if .K is
compact and every measurable set in the complement of K has
measure zero. In a Hausdorff space where every singleton is
compact, a probability measure is said to be concentrated at
a point x if x is its compact support. This means that
p({X}) = 1 and p(X-{X}) = o.

A set-valued function is a mapping from the real numbers
into the power set of a given set. In this paper the image
sets are subsets of a vector space, in particular, subsets of
the Euclidean plane. They are called set~valued functions.
To each -image set we attach a probability distributionpx(.).
This notation is standard in functional analysis where' the
symbol (.) is reserved for the dummy variable which ranges
over the particular image set. .

Suppose we have a set A with unit measure· p so that
peA) = 1. Then the value of the integral

•;')

+

•

(3 ) IwpdW.
A

where the dummy variable w ranges over ·the set A., is called
the expectation point of A. If the measure of A 'were a unit
mass this would represent the centroid of A.

If we have a set-valued function (f(x)} so that the image
of x is the set (f(x)} and we attach a unit measure Px on the
image set (f(x)} so that px({f(x)}) = 1, then we map the set
(f(x)} by means of the integral .

•

(4) J (0 )dpx( 0 )
(f(x) }

into its expectation point E (x) . .(It is explained in VII I ( 2 )
of [2] why dp(w)=p(w)dw)~ This defines a function called the
expectation function which maps x into E(x) and we consider
only cases where this mapping is measurable. In the
applications considered here E(x) is also bounded so that it
is Lebesgue integrable. Thus w, set up the double integral

•

(5) I(J ( I )dPx ( o» dX,
(f(x»}

•
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which we call a generalized integral, where the inner integral
maps the set (f(x)} at each x into its expectation point E(x)
so that the outer integral becoD)es an ordinary indefinite
Lebesgue integral

(6) IE(X1dxo

The generalized integral reduces to the ordinary Lebesgue
integral for ordinary integrable function f(x) if, we define
the probability. distribution at each point x to be
concentrated at ·the image point f(x) (a singleton) for this
ordinary function.

Set-valued function and the generalized integral are'
useful in solving a differential' equation of the type

(7)

where the right side is set-valued at x=O, its set-value there
being the segment [-1,1] or the segment [0,1] depending on
whether the positive integer n is odd or even. The function
on the right side of (7) is called an oscillation. It can be
shown that the product of an oscillation, such as sinnl/x
cosml/x, is an oscillation called compound oscillation. This
method enables us to solve a differential equation with

• compound oscillation of the type

y' = sinn1/x cosm1/X

(The solution will be discussed in a sequel to this paper).

•

•

A set-valued function can also approximate a wave packet
in quantum mechanics more accurately as it can accommodate
other requirements such as symmetry and indeterminacy and
upgrade path 'integration there with the use of the generalized
integral. The present representation of a wave packet as
unsymmetric superimposed wave function on another or wave
function with an envelope and with continuous derivative
violates the quantization principle, the uncertainty principle
and symmetry. The use of set-valued function with probability
distribution resolves the problem (details are given in the
sequel).

For a,~et-valued vector function we introduce,probability
distributions on the component sets and use the fact that the
components of the expectation point of a vector set are the
expectation points of its component sets.
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As we have seen in the first counterexample, the sequence
of derivatives of a uniformly convergent sequence of
(absolutely) continuous functions need not converge to a
single point. Hence, the limit points of such sequence form a
set-valued derivative, that is, the uniform limit of a
differentiable (hence absolutely continuous) function may have
set-valued derivative, which is not a derivative in the usual
sense. We, therefore, allow set-valued derivative and the
structure we put on each set-value is also a probability
distribution. Then, for set-valued derivative, we define
derivative, in a new sense, as the expectation point or
average of its set-values with respect· to its probability
distribution.,

To resolve the problem with Theorem I, we .adopt the
method of Young in [5] and define a function in the parametric
case as a pair (f(t),g(t», where f(t) is a real-valued
function, function in the ordinary sense and get) is also a
real number except in a set of measure zero, Independent; of
f(t). The variable t is a real-valued parameter. Thus, get)
is well defined a.e. in t and we call it the derivative Of
f(t). We define uniform convergence of a sequence of
functions in this new sense as follows:

Let (fn(t), gn(t», n = 1,2, .•• , be a sequence of
functions where gn(t) is the derivative of fn(t) which is well
def ined except in a set of measure zero. We say that the

. sequence converges uniformly to the function (fo (t), {go (t·) } )
if, for each t, lim fn(t) = fo(t) in the sup norm as n-->~ and
at points t where gn(t) is well-defined, {go(t)} is the set of
limit points of gn(t) as n -->~. At points where {gn(t)} is
set-valued we take as {go(t)} the limit set of the sequence
{gn(t)} as n-->~. We now take the closure under uniform
convergence of the space of functions in the new sense and
call that space the space of functions in the generalized
sense. The elements of this new space includes differentiable
(therefore absolutely continuous) ordinary functions,
functions in the new sense as well as functions in the
generalized sense where the derivative of each is set-valued
at some points or at all points. We now define the
generalized derivative of a function in this new sense at each
point t as the expectation point of its set-values there with
respect to some probability distribution. In the case where
the derivative go(t) is well defined, we define its
generalized derivative by taking a probability distribution
that is ccmpentrated at that point so that the expectation
point of that singleton go(t) coincides with it. Thus, the
generaliaed derivative reduces to the ordinary derivative when
the latter is well defined.

•

•

•

•
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It is clear that in this enlarged space of functions in
the new sense every absolutely continuous function has a
derivative provided we take the derivative in the generalized
sense. The converse of this statement is proved in [6]. Now,
we can state a rectified and more general version of
Theorem I:

A function f is absolutely continuous if and only if its
generalized derivative exists.

It is understood that f is really a pair (f, (g}) as
defined earlier. It is also clear that the generalized
derivative exists if the set-values of the derivative in the
new sense has finite measure.

Sequels to this paper will develop a calculus of set
valued functions, generalized theory of functions and
applications to differential equations and physics. In all
cases probability distribution will playa major role .



56 •,.

References

(1 ] Benacerraf, P, and Putnam, H.: Philosophy of Hl!i:t.hs
matics. Cambridqe University Press, London g 1985.

[ 2 ] Escultura, E. E.: Introduction to QuaIlta~iVB control
Theory. Kalikasan,' Qu~zon CitYg 1991.

•MacMillan, 2nd and Jrd

,..--.--.,._",..-_.."...."...__:Dead Ends and Contradictions in
Classical Mathematics. Technical Report, IMSP-PCAS'l'RO
NRcP, 1992.

" '

[4]" Royden, H. L. Real Analysis.
ed. gNeW York, 1963 and 1983.

[5] Younq, L.C.~ ,Generalized Curves and the Existence of an
Attained Absolute Minimum in the Calculus of Variations.
Comp't. Rend. soc 0 .scf , Lettr. V&!llJr'movie,CIIII,
10l1937), 211-234.

[3]

, [6] :: Lectures em 'the C81oo1ws of VarimtioM
and Optimal Control '!'beery.. w. Saunders, Philadelphia,
1969"

[ 7 ] : Mathematicians and Their
North-Holland, Amsterdam, 1980.

TiDeS.
•

..

•

..
•


